BuUGINE: a bug report recommendation system for Android apps

Zigiang Li
Southern University of Science and Technology
11510352@mail.sustech.edu.cn

ABSTRACT

Many automated test generation tools were proposed for finding
bugs in Android apps. However, a recent study revealed that de-
velopers prefer reading automated test generation cased written in
natural language. We present BUGINE, a new bug recommendation
system that automatically selects relevant bug reports from other
applications that have similar bugs. BUGINE (1) searches for GitHub
issues that mentioned common Ul components shared between
the app under test and the apps in our database, and (2) ranks the
quality and relevance of issues. Our results show that BUGINE could
find 34 new bugs in five evaluated apps.

CCS CONCEPTS

+ Software and its engineering — Software libraries and repos-
itories; Software maintenance tools.

KEYWORDS

bug report, recommendation system, Android apps

ACM Reference Format:

Zigiang Li and Shin Hwei Tan. 2020. BUGINE: a bug report recommenda-
tion system for Android apps. In 42nd International Conference on Software
Engineering Companion (ICSE °20 Companion), October 5-11, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3377812.3390906

1 INTRODUCTION

Bug finding is a creative and inspiring activity. Many automated
test generation [8] and repair techniques have been proposed to
ensure the reliability of Android apps [1, 3, 6]. However, reading
and reproducing the automatically generated test cases could be
time-consuming. A study showed that developers prefer reading
automatically generated test cases written in natural language [4].
This study also revealed that developers prefer manual testing com-
pared to automated testing due to the learning curve of automated
tools or lack of specific knowledge. Moreover, automated testing
techniques for Android apps mostly focus on finding crashes [5],
but neglect other non-crash related bugs (e.g., Ul bugs). Meanwhile,
many manually crafted bug reports (in natural language) are avail-
able in open-source repositories like GitHub.

Inspired by developers’ requirements and the redundancy of bug
reports, we propose BUGINE [7]. Given an Android app A, BUGINE

“Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °20 Companion, October 5-11, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7122-3/20/05.

https://doi.org/10.1145/3377812.3390906

Shin Hwei Tan"
Southern University of Science and Technology
tansh3@sustech.edu.cn

Build I Metadata o
Crawl o | GitHub Issues P pre- processing

processing —

Database of
GitHub Issues

ity

data
1 Data pre-processing
- f anking of
App Component App description APPquery & APPay Rﬁmkmg of
source code extraction files GitHub Issues

I common description

APPquery | Input APPquery
I description file

. Output
Extracting app
description files

related Issue

Search

Figure 1: Workflow for BUGINE

Table 1: UI description patterns

Component Example

android:id="@+id/my_btn"
<Button android:id="@+id/my_btn" />
main_layout.xml

Resource name

View name
XML file name

will automatically select relevant bug reports for A. Each relevant
bug report may include reproduction steps and bug fixes of similar
bugs that could be useful for testing and debugging.

2 METHODOLOGY

Figure 1 shows the workflow of BUGINE which includes: (S1) build-
ing a database of GitHub issues, (S2) finding common UI compo-
nents between Appguery and Appyarabase- (S3) constructing query
based on common components from (S2) to search for relevant
issues of Appyatrabases (S4) ranking the results based on the quality.
Building a database of GitHub issues. Our crawler selects An-
droid apps based on: (1) the users’ rating and downloads in the App
store, (2) the number of discussion and comments by developers,
(3) the number of the star and issue of GitHub repository, and (4)
the category of GitHub repository. Then, we collected all the issues
and the meta-data of the selected apps (i.e., title, author, number of
user comments, labels, issue state, body, commit SHA, etc.). We also
downloaded the source code from the master branch of each app for
subsequent steps. Our database has 23980 issues from 34 different
applications that are selected from 10 different functionalities (e.g.,
cloud client, GitHub client, file explorer, web browser, etc.).

Data Pre-Processing. Our data consists of GitHub issues and the
source code of the corresponding apps. For the GitHub issues, Buc-
INE pre-processes them with commonly used NLP techniques. We
also use Humps ! to unify the naming conventions of program
variables, including snake case, camel case, into variable tuples and
split compound (composite words). For the source code, specifically
XML files, we also extract structural information of UI components.
Extracting app description files. The UI of Android apps is typi-
cally declared in XML resource files that define the structural layout
of the UI components (e.g., view classes and subclasses). Each de-
fined resource will be mapped to a resource ID. To generate app

!https://github.com/nficano/humps

https://doi.org/10.1145/3377812.3390906
https://doi.org/10.1145/3377812.3390906
https://doi.org/10.1145/3377812.3390906

ICSE ’20 Companion, October 5-11, 2020, Seoul, Republic of Korea

Ziqiang Li and Shin Hwei Tan

Table 2: Statistics and Evaluation Results of the Android apps used

App Name Category KLOC #Downloads Rating Version No. #GitHub #GitHub Issue # Bugs Found

Stars (closed) (new,old)
Camera-Roll Gallery 26.00 100,000+ 4.2 1.0.6 420 227(133) (11, 0)
PocketHub GitHub client 31.35 10,000+ 3.3 0.5.1 9429 644(526) (12,2)
Simple File Manager Explorer 5.84 50,000+ 4.5 6.3.4 378 189(130) (6,2)
Zapp Broadcast 8.41 N.A. N.A. 3.2.0 60 151(137) 2,7)
Simpletask Reminder 24.80 10,000+ 4.7 10.3.0 349 821(583) (3,2)

description file for an app, BUGINE parses all its XML files in the
“src/main/res” folder. Specifically, as shown in Table 1, we extract
XML file names, view names and resource names, that describe the
UI components of an app. Then, we combine the three pieces of
information to search for the UI components of Appatabase With
the query: XML file name A View Name A Resource name.
Similarity Measures. BUGINE uses two widely used similarity
measures for computing text similarity [9]. To measure similarity
between issues’ title and query, BUGINE uses overlap coefficient [2].
BUGINE uses n-gram similarity to measure the similarity between
issue’s text body and query, and between UI components because
they could contain structural information. Then, BUGINE selects
the Appgarabase issues with relevant Uls by the weighted similarity
functions that evaluate the similarity of the parts of the two corpora,
and search keywords are generated from their common parts.
Ranking relevant GitHub Issues. BUGINE ranks the quality of
each issue E based on several factors f;(-), including (1) the length
of the text body of E, (2) the status of E (closed / opened), (3) if E
contains any bug-fixing commit, (4) the number of replies that E
received, (5) the overlap coefficient between the search keywords
and corpus, (6) if E contains all keywords in the corpus, and (7) if
E contains any important keyword (e.g., reproduce, defect). Given
an issue E, a component C that is similar to the search keywords,
the weighted ranking score is S(E,C, W) = T wi X fi(E, 0).

3 EVALUATION

We evaluate BUGINE on five open-source Android apps. Table 2 lists
information about the evaluated apps. We select these apps because
they are diverse in app categories, sizes, popularity, and the number
of issues. Our evaluation answers the research questions below:

RQ1 (Relevance): What is the overall performance of BUGINE in
recommending relevant GitHub issues?

RQ2 (Reproducibility): How many bugs can BUGINE find that
can be reproduced and lead to unexpected behavior in Appguery?

We evaluate BUGINE’s ranking performance using two previously
used measures [10].

Prec@k measures the retrieval precision over the top k (we use
k=5, 10, 20, 50) documents in the ranked list:

Prec@k = [# of relevant docs in top k] [k
Mean Reciprocal Rank (MRR) For each query ¢, MRR measures
the position firstq of the first relevant document in the ranked list:

MRR = |22 21| /10]

RQ1: Ranking Performance of BUGINE. Two raters indepen-
dently evaluate the top 100 ranked issues of each app that have not
been used before. Overall, the Prec@10 results range from 0.1 to 0.7,

which means that among the top 10 issues recommended by Bug-
INE, there is at least one relevant issue. Meanwhile, the MRR values
for BUGINE range from 0.34 to 0.75, which means that the ranking
for the first relevant document ranges between 3rd (0.34) and 1st
(0.75). This indicates that BUGINE could recommend relevant issues
for the evaluated apps.

RQ2: Number of bugs that BUGINE finds. With two raters, we
evaluate RQ2 by manually replicating the top-ranked issues to check
if they are reproducible in Appgyery and we consider that BUGINE
discovers a bug if such issue ranks in the top 100. The “# Bugs Found”
column in Table 2 shows the number of bugs found by BUGINE. In
total, we found 34 new bugs and 13 old bugs in all the five evaluated
apps. Overall, our results show that BUGINE could recommend
relevant issues, which leads to the discovery of new bugs. All bugs
found by BUGINE are archived at https://bugine.github.io/.

4 CONCLUSION

We introduce a new approach that recommends relevant GitHub
issues for an app under test. Given an app under test, BUGINE
searches for relevant GitHub issues based on the similarities of UI
components shared with other apps in our database and further
ranks them based on their quality. Our evaluation shows that it
helps to discover 34 new bugs in the five evaluated apps.

Acknowledgments. This work is partially supported by the
National Natural Science Foundation of China (Grant No. 61902170)
and Natural Science Foundation of Guangdong Province (Grant No.
2020A1515011494).

REFERENCES

[1] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android
Testing via Synthetic Symbolic Execution. New York, NY, USA.

[2] Gerald Kowalski. 2010. Information retrieval architecture and algorithms. Springer
Science & Business Media.

[3] Mario Linares-Vasquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Mas-
similiano Di Penta, Christopher Vendome, Carlos Bernal-Cardenas, and Denys
Poshyvanyk. 2017. Enabling mutation testing for android apps. In FSE. 233-244.

[4] Mario Linares-Vasquez, Carlos Bernal-Cardenas, Kevin Moran, and Denys Poshy-
vanyk. 2017. How do developers test android applications?. In ICSME. IEEE,
613-622.

[5] Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas, Christopher Ven-

dome, and Denys Poshyvanyk. 2016. Automatically discovering, reporting and

reproducing android application crashes. In ICST. IEEE, 33-44.

Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. 2018. Repairing

crashes in android apps. In ICSE. IEEE, 187-198.

Shin Hwei Tan and Zigiang Li. 2020. Collaborative Bug Finding for Android

Apps. In ICSE.

[8] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment:
Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In ICST
(ICST ’12). USA, 260-269. https://doi.org/10.1109/ICST.2012.106

[9] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:
bug detection with n-gram language models. In ASE. 708-719.

[10] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where Should the Bugs Be Fixed?

- More Accurate Information Retrieval-based Bug Localization Based on Bug
Reports. In ICSE. IEEE Press, 14-24.

=

7

https://doi.org/10.1109/ICST.2012.106

	Abstract
	1 Introduction
	2 Methodology
	3 Evaluation
	4 Conclusion
	References

